___ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА _ И ТЕРМОХИМИЯ

УДК 536.6+66-971+546.72:76:711/.717:654:4

ТЕПЛОЕМКОСТЬ И ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ НОВЫХ НАНОРАЗМЕРНЫХ ФЕРРО-ХРОМО-МАНГАНИТОВ LaM^{II}_{0.5}FeCrMnO_{6.5} (M^{II}-Mg, Ca, Sr, Ba)

© 2017 г. Б. К. Касенов*, Ш. Б. Касенова*, Ж. И. Сагинтаева*, М. О. Туртубаева**, К. С. Какенов***, Г. А. Есенбаева***

*Химико-металлургический институт им. Ж. Абишева, Караганда, Казахстан

**Карагандинский государственный университет им. Е.А. Букетова, Караганда, Казахстан

***Карагандинский экономический университет Казпотребсоюза, Казахстан

E-mail: kasenov1946@mail.ru

Поступила в редакцию 03.03.2016 г.

Методом динамической калориметрии в интервале температур 298.15–673 К на приборе ИТ-С-400 измерены теплоемкости наноразмерных ферро-хромо-манганитов LaM^{II}_{0.5}FeCrMnO_{6.5} (M^{II}–Mg, Ca, Sr, Ba). Установлено, что на кривой зависимости $C_p^{\circ} \sim f(T)$ у LaM^{II}_{0.5}FeCrMnO_{6.5} (M^{II}–Mg, Ca, Sr, Ba) имеются λ -образные эффекты, вероятно, относящиеся к фазовым переходам II рода. С учетом температур фазовых переходов из экспериментальных данных выведены уравнения температурной зависимости теплоемкости ферро-хромо-манганитов LaM^{II}_{0.5}FeCrMnO_{6.5} (M^{II}–Mg, Ca, Sr, Ba). В интервале 298.15–675 К вычислены термодинамические функции $H^{\circ}(T) - H^{\circ}(298.15)$, $S^{\circ}(T)$ и $\Phi^{xx}(T)$.

Ключевые слова: ферро-хромо-манганит, теплоемкость, термодинамические функции

DOI: 10.7868/S0044453717030116

Интерес исследователей к нанообъектам вызван обнаружением их необычайных физических и химических свойств. Магнитные ферриты переходных металлов находят все большее применение в современных нанотехнологиях. Они широко используются в электронике, в материаловедении, в медицине. Такое широкое применение основано на способности магнитных наночастиц откликаться на воздействие внешнего магнитного поля [1, 2]. Следует отметить, что манганиты как материалы, обладающие колоссальным магнитным сопротивлением, могут использоваться в качестве датчиков магнитного поля, считывающих головок для магнитной записи высокой плотности, датчиков перемещений и температур [3].

Определенный интерес вызывает сочетание манганитов, хромитов и ферритов в одном соединении в виде ферро-хромо-манганитов и особенно получение их наночастиц. В связи с этим цель данной работы — исследование термодинамических свойств новых наноразмерных ферро-хромо-манганитов $LaM_{0.5}^{II}$ FeCrMnO_{6.5} (M^{II}–Mg, Ca, Sr, Ba).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез проводили по керамической технологии с учетом стехиометрических количеств La₂O₃ (марки "ос.ч."), Fe₂O₃, Cr₂O₃, Mn₂O₃ и карбонаты шелочно-земельных элементов (квалификации "ч.д.а."). Реагенты тшательно перемешивали, перетирали в агатовой ступке при комнатной температуре, затем смеси переносили в алундовые тигли и отжигали в печи SNOL при 800-1200°С в течение 20 ч. После каждого повышения температуры через 200°С от 800 до 1200°С смеси охлаждали до комнатной температуры, затем заново перемешивали и перетирали. Низкотемпературный отжиг для получения устойчивых модификаций при низкой температуре проводили при 400°C в течение 10 ч. Наноразмерные частицы синтезированного ферро-хромо-манганитов получали

ТЕПЛОЕМКОСТЬ И ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ

Рис. 1. Электронные микрофотографии наноразмерных (нанокластерных) ферро-хромо-манганитов $LaM_{0.5}^{II}FeCrMnO_{6.5}; M^{II}-Mg(a), Ca(6), Sr(B), и Ba(г).$

измельчением на вибрационной мельнице компании Retsch (Германия) марки "MM301".

Размеры измельченных частиц устанавливали на электронном микроскопе JSPM-5400 Scanning Probe Microscope "JEOL". Получены наночастицы (нанокластеры) размерами 40–100 нм (рис. 1). Рентгенофазовый анализ наноразмерных частиц ферро-хромо-манганитов проводили на дифрактометре ДРОН-2.0. Рентгенограммы наноразмерных частиц исследуемых соединений индицировали аналитическим методом [4]. Результаты рентгенофазового анализа показывают, что синтезированные наноразмерные (нанокластерные) частицы ферро-хромо-манганитов лантана и щелочно-земельных металлов кристаллизуются в кубической сингонии: LaMg_{0.5}FeCrMnO_{6.5} – a == 20.160 ± 0.034 Å, $V^{\circ} = 8193.54 \pm 0.10$ Å³, Z = 8, $V_{_{ЭЛ.ЯЧ}}^{\circ} = 1024.19 \pm 0.01$ Å³, $\rho_{\text{рент}} = 5.15$, $\rho_{\text{пикн}} = 5.12 \pm$ ± 0.06 г/см³; LaCa_{0.5}FeCrMnO_{6.5} – $a = 20.143 \pm$ ± 0.036 Å, Z = 8, $V^{\circ} = 8172.83 \pm 0.11$ Å³, $V_{_{ЭЛ.ЯЧ}}^{\circ} =$ = 021.60 ± 0.01 Å³, $\rho_{\text{рент}} = 5.16$, $\rho_{\text{пикн}} = 5.18 \pm$

КАСЕНОВ и др.

 $C_p^{\circ} \pm \overset{\circ}{\Delta}$ $C_p^{\circ} \pm \overset{\circ}{\Delta}$ $C_{p} \pm \overline{\delta}$ *T*, K $C_n \pm \overline{\delta}$ $C_{p}^{\circ} \pm \overset{\circ}{\Delta}$ *T*, K $C_{p} \pm \overline{\delta}$ *T*, K LaMg_{0.5}FeCrMnO_{6.5} LaCa₀ ₅FeCrMnO₆ ₅ LaSr_{0.5}FeCrMnO_{6.5} 0.7437 ± 0.0139 0.5527 ± 0.0139 448 298.15 231 ± 16 317 ± 17 573 0.5319 ± 0.0119 239 ± 15 323 0.5588 ± 0.0102 234 ± 12 473 0.6930 ± 0.0179 295 ± 21 598 0.4431 ± 0.0086 199 ± 11 348 244 ± 15 498 0.5899 ± 0.0135 0.5827 ± 0.0132 0.6448 ± 0.0130 275 ± 15 623 265 ± 17 265 ± 11 373 0.6346 ± 0.0093 523 0.6197 ± 0.0170 264 ± 20 648 0.6500 ± 0.0144 292 ± 18 398 285 ± 15 548 250 ± 9 673 320 ± 11 0.6810 ± 0.0130 0.5878 ± 0.0074 0.7115 ± 0.0085 LaBa_{0.5}FeCrMnO_{6.5} 423 0.8020 ± 0.0097 335 ± 11 573 0.5728 ± 0.0114 244 ± 14 448 0.7027 ± 0.0110 294 ± 13 598 0.5812 ± 0.0154 247 ± 18 298.15 0.5145 ± 0.0114 244 ± 15 473 0.6255 ± 0.0098 261 ± 11 623 0.6320 ± 0.0135 269 ± 16 323 0.5228 ± 0.0064 248 ± 9 498 0.5639 ± 0.0124 236 ± 14 648 0.7030 ± 0.0187 299 ± 22 348 0.5633 ± 0.0130 267 ± 17 523 0.5107 ± 0.0132 213 ± 15 673 0.8153 ± 0.0124 347 ± 15 373 0.6161 ± 0.0105 292 ± 14 201 ± 16 398 334 ± 12 548 0.4813 ± 0.0136 LaSr₀ ₅FeCrMnO₆ ₅ 0.7050 ± 0.0088 187 ± 16 573 0.4465 ± 0.0135 298.15 0.5122 ± 0.0103 230 ± 13 423 0.8176 ± 0.0163 388 ± 22 234 ± 14 323 0.5149 ± 0.0157 232 ± 20 448 0.6944 ± 0.0139 329 ± 18 598 0.5606 ± 0.0122 623 0.6090 ± 0.0103 255 ± 12 348 0.5345 ± 0.0109 240 ± 14 473 0.6202 ± 0.0140 294 ± 19 648 0.6318 ± 0.0085 264 ± 10 373 0.5726 ± 0.0103 257 ± 13 498 0.5609 ± 0.0076 266 ± 10 0.6492 ± 0.0094 271 ± 11 673 398 0.6122 ± 0.0116 275 ± 14 523 0.5269 ± 0.0129 250 ± 17 423 298 ± 12 240 ± 10 LaCa_{0.5}FeCrMnO_{6.5} 0.6638 ± 0.0094 548 0.5048 ± 0.0074 298.15 0.5462 ± 0.0139 233 ± 16 448 0.7423 ± 0.0127 334 ± 16 573 0.4921 ± 0.0134 233 ± 18 323 0.5627 ± 0.0074 240 ± 9 473 0.7242 ± 0.0151 326 ± 19 598 0.5031 ± 0.0137 239 ± 18 348 260 ± 11 498 312 ± 16 0.6116 ± 0.0096 0.6940 ± 0.0127 623 0.5256 ± 0.0115 249 ± 15 373 0.6714 ± 0.0077 286 ± 9 523 0.6455 ± 0.0121 290 ± 15 648 0.5660 ± 0.0140 269 ± 18 398 0.5903 ± 0.0116 265 ± 15 0.6276 ± 0.0111 0.7481 ± 0.0113 319 ± 13 548 673 298 ± 15 423 0.8268 ± 0.0137 352 ± 16

Таблица 1. Экспериментальные значения теплоемкостей ферро-хромо-манганитов La $M_{0.5}^{II}$ FeCrMnO_{6.5} (M^{II}– Mg, Ca, Sr, Ba), [$C_p \pm \overline{\delta}$, Дж/(г K); $C_p^{\circ} \pm \overset{\circ}{\Delta}$, Дж/(моль K)]

Таблица 2. Коэффициенты уравнений температурных зависимостей теплоемкостей ферро-хромо-манганитов $(C_p^{\circ}, \exists m/(mon K) = a + bT + cT^{-2})$

M ^{II}	а	$b \times 10^{-3}$	$c \times 10^5$	ΔT , K
Mg	$-(1001 \pm 55)$	2634 ± 145	397 ± 22	298-423
	$-(375 \pm 21)$	509 ± 28	884 ± 49	423-573
	$-(3688 \pm 203)$	$-(3410 \pm 187)$	$-(5081 \pm 280)$	573-673
Ca	-(725 ± 39)	2188 ± 118	271.5 ± 14.7	298-423
	$-(392 \pm 21)$	672 ± 36	822 ± 45	423-573
	$-(4466 \pm 242)$	5430 ± 294	5248 ± 284	573-673
Sr	-(598 ± 33)	1791 ± 98	263.1 ± 14.0	298-448
	1904 ± 104	$-(2376 \pm 130)$	$-(1015 \pm 56)$	448-598
	7363 ± 403	$-(6906 \pm 378)$	$-(10850 \pm 594)$	598-673
Ba	$-(1254 \pm 70)$	3272 ± 182	468 ± 26	298-423
	$-(1160 \pm 65)$	1604 ± 89	1553 ± 87	423-573
	$-(3013 \pm 168)$	3717 ± 207	3668 ± 205	573-673

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 91 № 3 2017

Рис. 2. Температурные зависимости теплоемкости ферро-хромо-манганитов, а-г см. рис. 1.

 ± 0.02 г/см³; LaSr_{0.5}FeCrMnO_{6.5} – *a* = 20.103 ± ± 0.025 Å, *Z* = 8, *V*° = 8124.24 ± 0.08 Å³, *V*°_{эл.яч} = = 1015.53 ± 0.01 Å³, ρ_{рент} = 5.38, ρ_{пикн} = 5.37 ± ± 0.02 г/см³; LaBa_{0.5}FeCrMnO_{6.5} – *a* = 20.335 ± ± 0.038 Å, *Z* = 8, *V*° = 8408.77 ± 0.11 Å³, *V*°_{эл.яч} = = 1051.10 ± 0.01 Å³, ρ_{рент} = 5.60, ρ_{пикн} = 5.66 ± ± 0.06 г/см³.

Далее исследовали температурную зависимость теплоемкости и рассчитывали термодинамические функции наноразмерных ферро-хромо-манганитов LaM^{II}_{0.5}FeCrMnO_{6.5} (M^{II}–Mg, Ca, Sr, Ba).

В интервале температур 298.15–673 К на калориметре ИТ-С-400 измеряли удельные, а затем рассчитывали мольные теплоемкости ферро-хромо-манганитов. Предел допускаемой погрешности ±10% [5, 6]. Методика проведения исследований, градуировка и проверка работы калориметра аналогичны использованным в наших предыдущих исследованиях [7, 8].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В табл. 1 приведены результаты калориметрических исследований.

Из данных табл. 1 и рис. 2 видно, что LaMg_{0.5}FeCrMnO_{6.5}, LaCa_{0.5}FeCrMnO_{6.5} и La-Ba_{0.5}FeCrMnO_{6.5} при 423 К, LaSr_{0.5}FeCrMnO_{6.5} при 448 К претерпевают λ -образные фазовые переходы II рода, которые могут быть связаны с эффектами Шоттки, точками Кюри, Нееля, изменениями диэлектрической проницаемости, электропроводности и другими особенностями. С учетом выявленных температур фазовых переходов рассчитаны уравнения зависимостей $C_p^{\circ} \sim f(T)$, которые представлены в табл. 2.

-		** *	-				
<i>Т</i> , К	$C_{p}^{\circ}(T)\pm \overset{\circ}{\Delta},$ Дж/(моль К)	$S^{\circ}(T) \pm \overset{\circ}{\Delta},$ Дж/(моль К)	$H^{\circ}(T) - H^{\circ}(298.15) \pm \overset{\circ}{\Delta},$ Дж/моль	$\Phi^{xx}(T) \pm \overset{\circ}{\Delta},$ Дж/(моль К)			
LaMg _{0.5} FeCrMnO _{6.5}							
298.15	229 ± 13	212 ± 6	_	212 ± 10			
300	230 ± 13	214 ± 18	460 ± 30	212 ± 18			
325	231 ± 13	232 ± 20	6190 ± 30	213 ± 18			
350	245 ± 14	250 ± 21	12120 ± 670	215 ± 18			
375	269 ± 15	267 ± 23	18530 ± 1020	218 ± 19			
400	301 ± 17	286 ± 24	25640 ± 1410	222 ± 19			
425	338 ± 19	305 ± 26	33610 ± 1850	226 ± 19			
450	291 ± 16	323 ± 27	41380 ± 2250	231 ± 20			
475	259 ± 14	338 ± 29	48250 ± 2650	236 ± 20			
500	234 ± 13	350 ± 30	54400 ± 2990	242 ± 21			
525	214 ± 12	361 ± 31	59980 ± 3300	247 ± 21			
550	198 ± 11	371 ± 32	65120 ± 3580	252 ± 21			
575	186 ± 10	379 ± 32	69900 ± 3840	258 ± 22			
600	231 ± 13	388 ± 33	75200 ± 4130	263 ± 22			
625	256 ± 14	398 ± 34	81310 ± 4470	268 ± 23			
650	269 ± 15	409 ± 35	87900 ± 4830	273 ± 23			
675	271 ± 15	419 ± 36	94670 ± 5200	279 ± 24			
		LaCa _{0.5} FeCrMnO _{6.5}	5				
298.15	232 ± 13	220 ± 7	—	220 ± 7			
300	233 ± 13	222 ± 19	470 ± 30	220 ± 19			
325	243 ± 13	241 ± 20	6390 ± 350	221 ± 19			
350	262 ± 14	259 ± 22	12690 ± 690	223 ± 19			
375	288 ± 16	278 ± 23	19600 ± 1060	226 ± 19			
400	320 ± 17	298 ± 25	27150 ± 1470	230 ± 19			
425	355 ± 19	318 ± 27	35570 ± 1930	234 ± 20			
450	317 ± 17	337 ± 28	43870 ± 2380	240 ± 20			
475	292 ± 16	354 ± 30	51470 ± 2790	245 ± 21			
500	273 ± 15	368 ± 31	58520 ± 3170	251 ± 21			
525	259 ± 14	381 ± 32	65170 ± 3530	257 ± 22			
550	250 ± 14	393 ± 33	71530 ± 3870	263 ± 22			
575	244 ± 13	404 ± 34	77680 ± 4210	269 ± 23			
600	250 ± 14	414 ± 35	83820 ± 4540	275 ± 23			
625	271 ± 15	425 ± 36	90300 ± 4900	280 ± 24			
650	300 ± 17	436 ± 37	97490 ± 5280	286 ± 24			
675	351 ± 19	448 ± 38	105680 ± 5720	291 ± 25			

Таблица 3. Термодинамические функции ферро-хромо-манганитов в интервале 298.15–675 К

Таблица 3. Окончание

Т, К	$C_{p}^{\circ}(T)\pm \overset{\circ}{\Delta},$ Дж/(моль К)	$S^{\circ}(T) \pm \overset{\circ}{\Delta},$ Дж/(моль K)	$H^{\circ}(T) - H^{\circ}(298.15) \pm \overset{\circ}{\Delta},$ Дж/моль	$\Phi^{xx}(T) \pm \overset{\circ}{\Delta},$ Дж/(моль K)
		LaSr _{0.5} FeCrMnO _{6.1}	5	
298.15	229 ± 13	226 ± 7	-	226 ± 7
300	230 ± 13	227 ± 19	460 ± 30	226 ± 19
325	231 ± 13	245 ± 21	6200 ± 340	226 ± 19
350	242 ± 13	263 ± 22	12100 ± 660	228 ± 19
375	259 ± 14	280 ± 24	18350 ± 1000	231 ± 20
400	281 ± 15	298 ± 25	25090 ± 1370	235 ± 20
425	307 ± 17	315 ± 27	32440 ± 1780	239 ± 20
450	336 ± 18	334 ± 28	40470 ± 2220	244 ± 21
475	325 ± 18	352 ± 30	48730 ± 2670	249 ± 21
500	310 ± 17	368 ± 31	56680 ± 3100	255 ± 22
525	288 ± 16	383 ± 32	64170 ± 3510	260 ± 22
550	262 ± 14	395 ± 34	71050 ± 3900	266 ± 23
575	231 ± 13	406 ± 34	77210 ± 4230	272 ± 23
600	206 ± 11	413 ± 35	81230 ± 4450	278 ± 24
625	269 ± 15	423 ± 36	87220 ± 4780	283 ± 24
650	306 ± 17	434 ± 37	94470 ± 5170	289 ± 25
675	320 ± 18	446 ± 38	102340 ± 5600	295 ± 25
	I	LaBa _{0.5} FeCrMnO _{6.}	5	
298.15	232 ± 13	231 ± 7	-	231 ± 7
300	244 ± 14	232 ± 20	490 ± 30	231 ± 20
325	249 ± 14	252 ± 22	6600 ± 370	232 ± 20
350	269 ± 15	271 ± 23	13050 ± 730	234 ± 20
375	302 ± 17	291 ± 25	20170 ± 1120	237 ± 20
400	344 ± 19	312 ± 27	28220 ± 1570	241 ± 21
425	392 ± 22	334 ± 29	37400 ± 2080	246 ± 21
450	330 ± 18	354 ± 30	46280 ± 2580	251 ± 22
475	292 ± 16	371 ± 32	54020 ± 3010	257 ± 22
500	265 ± 15	385 ± 33	60950 ± 3400	263 ± 23
525	247 ± 14	397 ± 34	67330 ± 3750	269 ± 23
550	237 ± 13	409 ± 35	73360 ± 4090	275 ± 24
575	233 ± 13	419 ± 36	79220 ± 4420	281 ± 24
600	236 ± 13	429 ± 37	85060 ± 4740	287 ± 25
625	249 ± 14	439 ± 38	91090 ± 5080	293 ± 25
650	271 ± 15	449 ± 39	97560 ± 5440	299 ± 26
675	300 ± 17	460 ± 39	104680 ± 5840	305 ± 26

В связи с тем, что технические возможности калориметра не позволяют вычислить стандартные энтропии исследуемых соединений из опытных данных по теплоемкостям, их оценили методом ионных энтропийных инкрементов [9].

Далее на основании опытных данных по теплоемкостям и расчетным значениям стандартных энтропий ферро-хромо-манганитов вычислили температурные зависимости их термодинамических функций, которые представлены в табл. 3.

Таким образом, впервые в интервале температур 298.15—673 К экспериментально исследованы изобарные теплоемкости ферро-хромо-мангани-

тов LaM^{II}_{0.5}FeCrMnO_{6.5} (М^{II}–Mg, Ca, Sr, Ba) и вычислены температурные зависимости их термодинамических функций.

Работа выполнена в рамках проекта "Разработка технологии получения наноразмерных ферро-хромо-манганитов щелочных, щелочноземельных и редкоземельных металлов, обладающих перспективными электрофизическими свойствами", входящего в НТП "Научно-технологическое обеспечение рационального использования минерально-сырьевых ресурсов и техногенных отходов черной и цветной металлургии с получением востребованной отечественной промышленностью продукции", финансируемого согласно договора № 94 от 21 апреля 2016 г. между Комитетом науки МОН РК и филиала РГП "НЦ КПМС РК" "Химико-металлургический институт им. Ж. Абишева".

СПИСОК ЛИТЕРАТУРЫ

- 1. Балмасова О.В. Адсорбция жирных кислот из растворов органических растворителей на поверхности ферритов железа, марганца и меди: Дис. ... канд. хим. наук: 02.00.04. Иваново, 2010. 127 с.
- Tartaj P., Morales M.P. // Phys. D. App. Phys. 2003. V. 36. P. 182.
- 3. *Третьяков Ю.Д., Брылев О.А.* // Журн. Рос. хим. общества им. Д.И. Менделеева. 2000. Т. 45. № 4. С. 10.
- 4. *Ковба Л.М., Трунов В.К.* Рентгенофазовый анализ. М.: Изд-во МГУ, 1969. 232 с.
- 5. Платунов Е.С., Буравой С.Е., Курепин В.В. и др. Теплофизические измерения и приборы. Л.: Машиностроение. 1986. 256 с.
- Техническое описание и инструкции по эксплуатации ИТ-С-400. Актюбинск: Актюбинский завод "Эталон", 1986. 48 с.
- Касенова Ш.Б., Касенов Б.К., Сагинтаева Ж.И. и др. // Журн. физ. химии. 2014. Т. 88. № 10. С. 1617.
- 8. *Касенов Б.К., Туртубаева М.О., Амерханова Ш.К. и др. //* Журн. физ. химии. 2015. Т. 89. № 6. С. 915.
- Кумок В.Н. // В сб.: Прямые и обратные задачи химической термодинамики. Новосибирск: Наука, 1987. С. 108.