Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
https://rep.keu.kz/jspui/handle/123456789/403
Название: | On the kernel properties of the integral equation for the model with the essentially loaded heat equation |
Авторы: | Yessenbayeva, G.A. Yesbayev, A.N. Ramazanov, M.I. |
Ключевые слова: | thermophysical processes electric arc loaded heat equation oundary value problem reduced integral equation kernel of an integral equation |
Дата публикации: | 2019 |
Издательство: | Karaganda state university named after E.A. Buketov |
Серия/номер: | ISSN 1811-1165, ISSN 2413-2179, Eurasian Physical Technical Journal, 2019, Vol. 16,;№2 (32) |
Краткий осмотр (реферат): | Yessenbayeva G.A. On the kernel properties of the integral equation for the model with the essentially loaded heat equation [Text] // Yessenbayeva G.A., Yesbayev A.N., Yessenbayeva G.A., Ramazanov M.I. // Eurasian Physical Technical Journal, 2019, Vol. 16, №2 (32), Р. 105-112. |
Описание: | Mathematical modeling of thermophysical processes in an electric arc of high-current disconnecting apparatuses leads to a boundary value problem for an essentially loaded heat conduction equation. Taking into account the transience of such phenomena, in some cases only a mathematical model is able to give adequate information about their dynamics. The mathematical model in the form of the boundary value problem is reduced to the Volterra integral equation of the second kind, as a result, we have that the solvability of the boundary value problem is equivalent to the solvability of the reduced integral equation. Thus, there is a need to study the reduced integral equation. The results of this study (various representations and properties of the kernel-forming function in general case and the types of the kernel of the integral equation in special cases) are presented in this article. The article is focused at physicists and engineers, as well as scientific researchers engaged in the practical applications of loaded differential equations. |
URI (Унифицированный идентификатор ресурса): | https://rep.keu.kz/jspui/handle/123456789/403 |
ISSN: | 1811-1165, ISSN 2413-2179 |
Располагается в коллекциях: | 2019 |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
Yessenbayeva.pdf | 705.82 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.